ODE/PDE Qual Questions Jan 2014 - Jan 2018

1 ODE

(Total distinct questions: 21. Format: do #1, choose 4 others.)

1.1 Jan 2014
1. (9/9)

(a) Theorem. Let Xg € U C R", where U is open, and let I = (—b,b) C R. Suppose F' is continuous
on I x U and satisfies the Lipschitz estimate |F(t, X1) — F(t,X2)| < L| X1 — Xo| fort € I and
X1, Xo € U. Then there exists a unique solution to %X = F(t,X), X(0) = Xo, on some interval
J=(—a,a) C I

Proof. First, observe that integrating % = F(t,X) gives

X(t)=Xo+ /Ot F(s,X(s))ds.

Existence will follow from Picard iteration. Set X((t) = X and recursively define

¢
Xi(t) = Xo +/ F(s, Xk—1(s))ds.
0
We will show that as k — 0o, X} () converges to a unique solution. To do so, we will use the Con-
traction Mapping Thorem. Define S = {X(t) € C(J,R™) | X(0) = Xo,sup || X (t) — Xo| < 6},
teJ

where J = [—a,al, a to be chosen later, and € chosen such that B(Xp,e) C U. S is a complete
metric space under the metric d(X (¢),Y (¢)) = sup| X (¢) — Y (¢)|.
teJ

Define a map T on S by
t
(TX)(t) = Xo + / F(s,X(s))ds.
0

Now, J C I, so by the continuity of F' and the Extreme Value Theorem, weset M = max__|F(s,Y)|.
TxB(Xoe)

Choose a < 7. Then, T': S — 5, since TX(0) = X, and

ITX (1) — Xo| < /OtF(s,X(s))ds

€
<aM < a— =¢e.
a



By the Lipschitz hypothesis, if t € J and Y, Z € S,

(TY)(t) = (TZ)(t I—/Fé’Y( ) = F(s, Z(s))ds

/ P (s, ~ F(s, Z(s))|ds

_AWOHWS

< aLsup|Y(s) — Z(s)|.
seJ

If in addition, a < %, then T : § — S is a strict contraction, so by the Contraction Mapping
Theorem, there exists a unique X such that

X(t)=Xo+ /0 F(s,X(s))ds.

O
2
(b) Consider o’ = 3z3, 2(0) = 0. This example is not locally Lipschitz since at = 0, 31?’43_50 =
3| £ L for y close to 0. And indeed, infinitely many solutions exist. For any ¢ > 0,
Y3
0 ift<g
“’(t)_{ (t—¢)® ift>ec
solves it.

(¢) Such an example cannot be linear, since we can solve every linear system. Indeed, let f(X,t) be
linear in X, so f(X,t) = A(t)X + B(t). Then f(X,t)— f(Y,t) = At)X + B(t) — A}t)Y — B(t) =
At)(X =Y), so |f(X,t) — f(Y,t)] < |A(t)||X — Y], and f is Lipschitz with constant |A(¢)|. By
the existence and uniqueness theorem, f has a unique solution.

For our example, consider X’ = 1+ X2, X(0) = Xy. Then X (t) = tan(t — ¢) for any ¢ = ¢(Xj).
This is only continuous on —* +c <t < 5 +c.

2. (5/9)

Suppose not. Then for all n € N, there exists z,,, y, € C such that |F(z,) — F(y,)| > n|z, —yn|. Since
C is compact, there exists a subsequence ny such that x,, — xo and y,, — yo for xg,yo € C. Now,

— ol = 1 < - — < - -

20 = w0l = Hm_[one — g < lim_ = |Plzn,) = Flu)| < Y —-2sup|F| =0
Thus, z¢ = yo. Since F' is locally Lipschitz, there exists Uy, such that zy € U,, C O with F' Lipschitz
on Ug,. And by convergence, there exists N such that if ny > N, then z,,,yn, € Us,. Let L be
the Lipschitz constant of F' on Uy,; then if ny, > N, L, we have ng|zn, — Yn,| < |F(zn,) — F(yn,)| <
L|zy, — yn,|, so ng < L, a contradiction.

3. (5/9)

Theorem. Let u: [0,a] — R be nonnegative and either



o u/(t) < ku, u(0)=C,ueCt, or

¢
o u(t) < C+/ ku(s)ds, u(0) = C, u e C.
0
Then u(t) < Cekt.

Proof. If in the first case, we show %SfT) < C. See that % [ue_kt] = e *(u' — ku) <0, since v’ < ku.
Thus, ue™ " is decreasing, so ue™** < u(0) = C.

t
If in the second case, let v(t) = C —I-/ ku(s)ds. Then v'(t) = ku < kv and v € C*, so apply the first
0

case. O

4. (3/9)

a a

(a) Notice that if A= {_1 0

] , then Tr A = a and det A = a. Thus in the trace-determinant plane,

as a varies, we have

2 _ —
D T =4D

(b) See that the graph in (a) immediately shows us that if a < 0, the system is a saddle, if 0 < a < 4,
the system is a spiral source, and if a > 4, the system is a source. Let’s also see this by checking
cigenvalues. See that A = TEVIZAD go )\ = atva—da _ oty ';(a_4), When a < 0, 2=V2e=? \/‘12(“‘4)

is negative, while FvVae=%) ”;@_4) is positive, so we have a saddle. When 0 < a < 4, atyalamd) ”Zw_él) is



complex valued with real part § > 0, so we have a spiral source. Finally, when a > 4, a++(a_4)

d a—y/a(a—4)
2

Bifurcations occur at ¢ = 0 and a = 4.

an are both positive, so we have a source.

5. (2/9)

Consider the family of differential equations
2’ = ax —sinz,
where a is a parameter ranging from —oo to oco.

(a) Sketch the bifurcation diagram for this family of differential equations.

(b) Determine the qualitative behavior of all the bifurcations that occur as a increases from
—o0 to oo.

6. (1/9)

Discuss the local and global behavior of solutions of
r=r—r360 =sin?6+a

at and near the bifurcation point @ = —1. (For this problem, = r cos€ and y = rsin 6.

7. (5/9)

Find the general solution to
X' '=AX +G(t)

where A = [_01 (1)] and G(t) = m

8. (6/9)




(a) Let (x(t),y(t)) be a solution curve for the system. By the chain rule,
dH _OH , OH , OHOH OHOH _
at  ox " dy Y= or 8y ay or

(b) Smce —y, H(x,y) = % + f(x). Since %—I: =23z, H(z,y) = %4 —x—;—i-g(y). Then, clearly,
onesuchHlsH( x,y )=%2+z——”” . Itisimmediatethat%=y=x’and%=x3—x=
—(—2¥+2z) =—y.

9. (6/9)

Prove that the systems

, 1
X—be

with A < 0 and

, -1 0
x_[o _1]X

are conjugate. (Do not invoke the theorem, explicitly prove the conjugacy for this special case).

1.2 Aug 2014
1. 1.1.1

2. 1.1.2
3. (5/9)

Write v(t) = |Y(t) — Z(t)]. Since Y (t) — Z(t) = Y(to) — +/ ( $,Y(s F(S,Z(s)))ds

and F is Llpschltz with constant K, i.e., |F(s,Y(s)) — F(s,Z(s))] < K[|Y(s) — ( )|, this means
t+to

v(t) < v(to) / Kv(s)ds. Now let u(t) = v(t +to); thus u(t) = v(t +t9) < v(to) —|—/ Ku(s)ds =

to
+/ Ku(s)ds. So by Gronwall, u(t) < u(0)eXt, so v(t + to) < v(tg)eX?, so v(t) < v(t)et—to),
0
so |[Y(t)— Z(t)| <|Y(to) — Z(to)|ef**) as desired.

4. (3/9)




The nulclines are where 2/ = 0 and ¢y’ = 0. When ¢/ = y(y — 1) =0, y = 0 or y = 1. When
' =xz(y+2x—2)=0,2=0o0r y=—2x+ 2. The nulclines are therefore

Y

We check signs to see the direction of the phase portrait across the nulclines. The resulting portrait is

The phase portrait can be completed by filling in arrows in the only way they can go.

5. (5/9)

(a) Since 2’ = x (1 — %) = x(1 — z)(1 + z), there are equilibria at z = 0,1, —1. Choosing sample
points and analyzing sign, the phase line is therefore



8

Notice that 1 and —1 are sinks, while 0 is a source.

(b) Here, go(z) = (1 —2?) —az =z (1 — 2% —a). See that when a = 0, we have the phase line in
part (a), and when a = 1, g;(x) = —23, which has a single equilibrium at z = 0, a source. It
is an easy exercise of picking a values in the regions (—o0,0), (0,1), and (1,00) to see that the
complete picture must be

—

;#
%au

A bifurcation occurs at a = 1, where we switch from three equilibria when a < 1 to a single sink
when a > 1.

(c) Since g4(z) =z (1 — x2) + a, and varying a does not affect x, the bifurcation diagram will be

\

\

W
T

It only remains to find the bifurcation points, where the system switches from having one sink to
three equilibria and from three equilibria to one sink. See that these points occur at the repeated
roots of the cubic. In other words, to find a bifurcation point a, we solve (z — a)?(z — 3) =
—2% + x + a for a. Let’s equate coefficients; if (z — a)?(z — 8) = (22 — 20z + o?) (z — ) =
% —2a2? + o?x — Br? 4+ 2ahx — a?B = 23 — 2a+ B)2? + (a? +2a8)r — a?B = —23 +x +a, then

—2® + 20+ B)2® — (&® +2aB) z + B = —2° + z +q,

SO
20+ =0
—a?—2aB=1
o?B=a

So B8 = —2a, and thus —a? — 203 = —a? — 2a(—2a) = —a? +4a? =3a? = 1,50 a = + %,

B =7F2 %, and therefore a = %ﬂ/g are our bifurcation points.



6. (4/9)

For the nonlinear system a’ = cosy, ¢y’ = cosz on the set O = (0,27) x (0, 27),

(a) Find all of the equilibrium points in O and describe the behavior of the associated lin-
earized systems.

(b) Sketch stable and unstable curves on O for any saddle points of this system.

7. (4/9)

Find the general solution and the phase portrait of the system

;10 1 cost
X = [—1 0] A [sint] ‘

8. 1.1.8
9. (6/9)

. 2 a
(a) See that if A = [1 9

see that as a varies, we get

] , then Tr A = 4 and det A = 4 — a, so in the trace-determinant plane, we

o2
D T“=4D




(b)

()

We can tell by the trace-determinant plane that when a € (4, ), the systems are all topologically
conjugate to each other and saddles, when a € (0,4), the systems are all topologically conjugate
and sources, and when a € (—00,0), the systems are all topologically conjugate and spiral sources,

T+/T2—4D 4+4/4%2—4(4—a)
2

but let us show this using eigenvalues as well. Since A = , wehave A\ = ———— =

% = 2+ +/a. When a > 4, we have two real eigenvalues, one positive and one negative, so the
system is a saddle. When 0 < a < 4, both 2 4 y/a and 2 — \/a are positive, so we have sources.
Finally, when a < 0, we have complex eigenvalues with real part 2 > 0, so we get spiral sources,
all as claimed.

The system is non-hyperbolic when a = 0 and a = 4.

1.3 Jan 2015
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- (5/9)




First we find the Poincaré map. Observe as

¥ =a(t)x
:E/
i a(t)
to .1 t
m—ds=/ a(s)ds
o T 0

0 T
Then ¢(x(0),0) = z(0) exp (/0 a(s)ds) = 2(0) and ¢(x(0),T) = x(0) exp (/0 a(s)ds) = p(x(0)),

50 o(z,1) = T exp ( /O t a(s)ds>.

T
To show that all solutions are periodic with period T if and only if / a(s)ds = 0, we let z be an
0

T
arbitrary periodic solution with period T. Then ¢(x, T)—p(x,0) = 0if and only if z exp ( / a(s)ds) -
0

T T T
z=0,s0 (exp (/ a(s)ds) — 1) =0, so exp (/ a(s)ds) =1,s0 / a(s)ds = 0, as desired.
0 0 0

6. 1.2.4
7. 1.2.7
8. 1.1.8
9. 1.1.9

1.5 Jan 2016
1. 1.1.1
2. 1.2.3
3. (2/9)

10



};L/((tt)) = u(i)(:)(t) < h(}?(g)(t) = v(t), so & [In(h(t))] < v(t). As u and v are nonnegative,
t t
/0 7 [In(h(s))]ds < /0 v(s)ds =V (t)
In(a(t)) — In(h(0)) < V(t)
In <h(((t))) <V(t)
h(t) v
0)
h(t) < h(0)e"®
u(t) < h(t) < Ce’®,
as desired.
4. 1.2.9
5. 1.4.5
6. 1.2.6
7. 1.1.7
8. 1.2.5
9. 1.1.9
.6 Aug 2016
1. 1.1.1
2. 1.1.2
3. 1.1.3
4. 1.2.9
5. 1.4.5
6. (2/9)
For each of the following non-linear systems find the equilibrium points and describe the behavior
of the associated linearized system. Describe the phase portrait of the non-linear system and
compare its solutions with the solution of the linearized system near the equilibrium point.
o =r+yty =y
=z (x2 +y2),y' =y (a:2 +y2) .
7. 1.2.7
8. 1.2.5
9. 1.1.9

11




1.7 Jan 2017
1. 1.1.1

[\]

. 1.1.2
1.5.3
1.2.9
1.4.5
1.1.8
1.1.7
1.2.6

© 0® N> oW

(Warning: 1.2.5, with a +!)

(a) Note that actually the + sign makes a significant difference in several parts, specifically because
1 + 22 no longer factors in the reals. For part (a), # = 0 is the only equilibrium, and the phase
line is

(b) When g4(x) = x (14 2?) — az = (1 + 22 — a), see that we have almost the same behavior as
1.2.5. Choosing a = 1, g;(x) = 2?, and for larger a, the quadratic piece now factors. So see that
the bifurcation diagram must be

/

P

IS
Il
oPp
Il
—

T~

(c) Here, go(z) = 2 (1 4+ 2?) + a = 2® + 2 + a. Since 2® + 2 : R — R is bijective, this means there
are no repeated roots, and thus no bifurcation points; the bifurcation diagram is simply

12



1.8 Aug 2017
1. 1.1.1

2. 1.1.3
1.2.9
1.2.3
1.2.4
1.6.6
1.2.7
1.2.5

A A A

1.1.8

1.9 Jan 2018
1. 1.1.1

2. 1.1.3
1.1.4
1.2.3
1.1.9

(1/9)

S o W

For the nonlinear system ' = sinx, ¢y = cosy on the set O = (—%, 37”) x (0, 2m), describe the

phase portrait (carefully justifying the behavior of the system near equilibrium points). Clearly
identify any stable or unstable curves.

7. 1.1.7
8. 1.4.5

9. (1/9)

13



If %—I; =2’ = 2? — 2xy, then H(x,y) = 2%y — xy® + f(z), and if %—ZI = —y = —y? + 2zy, then
H(x,y) = —y?x+ 2%y +g(y), so H(x,y) = 2%y —xy?. If H(z,y) = 0, then 2y? = 2%y, so we have level

curves z =0,y =0, and y = z.

To analyze equilibria, see that 2’ =y’ = 0 if and only if (z,y) = (0,0). If we consider the linearized

system at (0,0), we have

9z’
ox
dy’

ox

DF =

SO

oz’
By | _ 22— 2y
oy’ | — _Qy

—2x ]
& 2y — 2z

Thus the linearized system at (0,0) is non-hyperbolic, and we gain no information. We thus analyze
direction on level curves. See that if x = 0, then 2’ = 0 and 3’ > 0, if y = 0, then 2’ > 0 and ¢y = 0,
and if y = x, then 2’ < 0 and y’ < 0. We have the following phase diagram.

r=0
7

——y==x

Solution curves can be filled in as desired.

2 PDE

oy =

(Total distinct questions: 24. Format: do 5, at least one from each group.)

2.1 Jan 2014
I. Laplace Equation

1. (5/9)

Yes, the limit function » must be harmonic. We provide a proof. As each u, is harmonic, it satisfies

the mean value property; i.e., u,(z) =

undo for every B(z,r) C . By uniform convergence

OB (z,r)
in o(y) on B(z,r), we can interchange limits; thus, we must have that

u = limu, = lim U do = ][ lim u,,do = ][ udo.
OB (z,r) OB (z,r) OB (z,r)

Since this holds for every B(z,r) C Q, by the converse to the mean value property, u is harmonic.

14



2. (5/9)

(a) Theorem. If u is a nonnegative harmonic function on U CC Q, connected and open, then there

exists a positive constant C' such that supu < C' irl}f u.
U

Proof. Let r = % dist(U, 0€2). Choose z,y € U so that |z — y| < r. Then

1 1 1 1
u(z) = ][ udz = / udz > / udz = —][ udz = —u(y).
B(z,2r) wn 2" Jp(z,2r) wn2'™ Jp(y.r) 2" By 2

Thus, 2"u(x) > u(y) if |z — y| < r. Since U is connected and U is compact, cover U by a finite
chain of balls {B; | j = 1,..., N}, each with radius § and B; N B;j_; # @ for j = 2,...,N. Thus,
u(y) < 2"Nu(zx) for all 2,y € U. O

(b) Tt is not possible. Let U be a neighborhood of 0 such that f > 0 on U. Since f is harmonic and
nonnegative, by Harnack, there exists C such that supy; f < C'infy f. Since f is nonnegative and
f(0) =0, infy f = 0. Thus supy; f =0, and f = 0.

On the other hand, if we remove the sign condition, an easy example arises by letting n = 1
and counsidering f(z) = z. Then, Af =0, so f is harmonic, and around any neighborhood of 0,

£(0) =0 but f 0.
3. (5/9)

(a) Theorem. Let U C R" be open. If u € C*(U) is harmonic, then

u(x) = ][ udo = ][ udy
OB (z,r) B(z,r)

for every B(xz,r) CU.

Proof. Set p(r) = ][83( )u(y)da(y). So

1 / 1
o(r) = ——— u(y)do(y) = — u:c+rzdaz=][ u(x +rz)do(z).
() = T fop WO = 2o [ wetr)do() = f  uatra)ido(z)



Now, see that
, 0
o'(r) = —u(z +rz)do(2)
aB(0,1) Or

= ][ Vu(z +rz) - zdo(z)
aB(0,1)

— X
=f Va(y) - YL do(y)
9B(x,r)

r

du(y)
= do(y
]iB(w,r) dv ( )

1 du
-
|8B(‘ra ’I”)| OB(z,r) dv
1
= E Au(y)dy
|0B(z,7)| JoB(z,r
so ¢(r) is constant. Thus
o(0) = Tim (1) = lim uly)do(y) = u(z),
t—0+ t—0+ 0B (z,t)

so u(x) = ][ u(y)do(y). Finally, see that
OB (z,r)

T T n |
/ udy = / / udo | ds = / nwps " tu(z)ds = u(m)nwns— = u(z)|B(z,r)|,
B(z,r) 0 OB (z,r) 0 n o

so divide by |B(z, )| to get the result. O
(b) Theorem. Suppose u € C (U) is harmonic on U. Then Maxy = max, and if U is connected

and there exists a point xg € U such that u(xg) = maxu, then u is constant on U.
T

Proof. Suppose there exists g € U such that u(zg) = maxu = M. Then by the mean value
U

property, M = u(xy) = ][ udy < M. Equality can hold only if u = M, so u(y) = M for all
B(zo,m)

y € B(xo,7). Thus the set {z € U | u(z) = M} is clopen in U, so if U is connected, all of U. If

U is not connected, U is a union of connected components, so the first part follows by applying

the argument to each connected component. O

I1. Heat Equations
4. (4/9)

16



See that

d d
SIED] = 5 [ / (0,1)|Vu<x,t)|2dx]

= / 2V,u - Viurde
B(0,1)

= —2/ Ayu - updt + 2/ du d—ua(:v).
B(0,1) aB(0,1) dv  dt

But on 9B(0,1), u(z,t) = 1. This means 2% =0 on 0B(0,1), so

L iB@) = -2 / N
dt B(0,1)

Since w is caloric, u; = Agzu, so

a4 [E(®)] = —2/ Agu - Agudr = —2/ |A ul?de <0,
dt B(0,1) B(0,1)

so E(t) is non-increasing, as desired.

5. (6/9)

(a) First note that

0 , ou
ax QD(U) =@ (’LL) : %a 50
0? Ou  Ou 02




Then, as w is caloric, % — Au =0, and

since ¢ convex means ¢ (u) > 0.

(b) Notice that v can be thought of as a function of u; i.e., v(u) = |Vu|? + u;2. Notice that V]
and %H are both linear operations, hence convex, that |-|> and -2 are both convex, and that

the summation of convex functions is convex. Therefore, |V[-]|? + (%[-])2 is a smooth, convex

function, so by part (a), since u is caloric, v = v(u) is sub-caloric.

ITI. Wave Equations

6. (1/9)

This is false. See Homework 5.

7. (2/9)

If u;y — Au = 0, then, differentiating in ¢, we have uyy — (Au), = 0. Since u € C?, (Au), = A (u;), and
since v = uy, we have that vy — Av =0 in R" x (0,00). Furthermore, since u; = h on R" x {t = 0},
v ="hon R" x {¢t = 0}. Finally, we must show that v;(z,0) = 0. See that

v(x,0) = ug(z,0) = tl_i>r(§l+ u(z,t) = lim Au(z,t) = Au(z,0) = A(0) =0,

t—0+
as desired.
IV. Miscellaneous

8. (4/9)



Euler’s PDE for a homogeneous function u(1, ..., 2,) is

where « # 0 is a constant.

(a) Solve Euler’s PDE with initial condition u(z1, ..., #n—1,1) = h(x1, ..., 2,—1) for some func-
tion h: R"' — R.

(b) A function g is homogeneous of order 3 if g(Axr) = Mg(x). Determine to what degree
your solution u from (a) is homogeneous.

9. (9/9)

k

First note that g € H* (R") if and only if §- (1 +[£]?)2 € L?(R"). Note also that the Fourier
transform of (1 — A) is 1 + 47w%[¢|%, so the Fourier transform of (1 — A)? is (1 +47r2|£|2)3. Then,

(1+4n2¢2) @ = F, so

T ,(1+|§|2>3
(1+4m2)¢2)® \1+[¢2)

Since f € H® (R"), f- (1+1[£?)2 € L? (R™). Furthermore, % is smooth and bounded, so

2 \3
(%) is. Then, observe as

~ 26 f 1+162\° 546
w0k H = L () ke

_( L+ e > Ot lg)ats
IASERCEGE (1+g)°

T+e? \° = .
~ (T T+l

)

s+6

Therefore, U - (14 [£]?)™2 € L? (R"), and thus, u € H*T® (R"), as desired.

10. (4/9)

o~

We compute f(§) = / e 2 E () de. If f(z) = e~ then f'(z) = —2amze "™ = —2amaf(x).
R



Thus, take the Fourier transform of both sides:

(f') (€) = (~2ame f)(€)

~

2mié f(€) = —2ar - % (f(f))/

amief(€) = ~ai (F())
“efie) = (7@) -

Thus, f(f) = Cexp <_TQ“ . %), and C' = f(O) = Rf(m)dx = /Re_‘“””Zdw = La' Therefore,
-~ 1 —xe?
f(&) = 7

2.2 Aug 2014
I. Laplace Equation
1. 2.1.1
2. 2.1.2
3. (6/9)

By Green’s Theorem,

/Vu-Vudmz—/uAudm—i—/ u'd—ud(f:—/u-)\udac—i—/ u'd—uda.
Q Q oo dv Q oo dv

Since u = 0 on 99, / Vu - Vudr = — [ Mu?dz. Thus, / (|Vu|2 + >\u2>dﬂc = 0. If A < 0 there is

Q Q
nothing to show, so assume A > 0 and consider the following cases.

If A > 0, then / (|Vu|2 + )\u2>da: = 0 for all z forces |Vu|? + Au? = 0. Everything is nonnegative,
Q
forcing u = 0.

If A =0, then Au = 0, so u is harmonic. By the maximum and minimum principles, u attains its max
and min on 912, so maxu = minu = 0, so u = 0.

Therefore, either A < 0, or u = 0.
II. Heat Equations
4. 2.1.5

5. (4/9)




We use integration factors. If uy — Au + cu = f, then use® — Aue® + cue®® = fet. Notice that since
(ue), = ure 4 uce and since Aue = A (ue®) as A = A, we get (ue), — A (uet) = e f.

We have thus shown that ue® must solve the non-homogeneous heat equation, and therefore it is
well-known that

¢
uelt = / / D(x—y,t—s) e f(y,s)dyds + / ®(z —y,t) - g(y)dy,
o Jr» R"

where
1 ol
O(x,t) = = e i
(4mt) 2

is the fundamental solution of the heat equation. (Note that what ® is does not matter here, only that
/ B(z, t)dz = 1.)

Now, since f and g are compactly supported, we know that |e¢* - f| < M and |g| < N for some
M, N > 0. By the triangle inequality and since ® > 0,

t
|uecf|s/0/ |<I><x—y,t—s>|-|ect-f|dyds+/R B(x — y,1)] - lgldy
t
SM// @(x—y,t—s)dyds—i—N/ O(x —y,t)dy
0 " R”

t

:M/ ds+ N
0

= Mt+ N.

Thus, |u| < (Mt+ N)e=°". For t > 0, (Mt + N)e “ is bounded. Thus it reaches a maximum at some
to > 0. Let C = Mtg + N; then |u(z,t)| < Ce™¢, as desired.

ITI. Wave Equations
6. (5/9)

Let u solve the initial value problem for the wave equation in one dimension:

Ut — Uz =0 in R x (0, 00)
u=g,uy=h onRx{t=0}

1 o0
Suppose g and h have compact support. The kinetic energy is k(t) = 5 / ug?(x,t)dx and

—00

1 (o9}
the potential energy is p(t) = 5 / ug%(x,t)dz. Prove k(t) = p(t) for all large enough times t.
—0o0

7. 2.1.7
IV. Miscellaneous
8. 2.1.8
9. 2.1.9
10. (5/9)
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Note that

Thus,

This forces

From the other direction,

So ¢ = ((1+4x%e[>)1)"

2.3 Jan 2015

I. Laplace Equation
1. 2.2.3
2. 2.1.2
3. 2.1.3

I1. Heat Equations
4. 2.2.5
5. 2.1.5

u(zx,t) = / eQWiw'Eﬂ(g,t)dg, o)
R
(1—Au= / X E(1 4 4r?|€1?)ude.
R

Also, f:/ eQWiw'gfdg.
R

0=01-Au—f

0= [ e2mizt ((1 +An?[¢)?)i — f) de.
R

0=(1+47%¢P)a—f
U= f-(1+4n?¢)!
u=fx* ((1 +47T2|£|2)_1)v .

(5:/ G_Qﬂimf(p(af)dl‘
R

/ 6727rim-£167\x|d$
R 2

I : L[ ;
— 7/ ew(l_%”&)dl'—i-*/ e—z(l-{-?Trzf)daj
2] 2/,

0 1 e—w(1+42mig) |

*y 1+ 2mi¢

1 ea:(1727ri£)
21— 2mif

—o00 0

S (R
2\ 1 —2mi¢ 1+ 2mig
1(1+27ri§+1—2m'§)

2 \ (1 —2mi&)(1 + 2mi€)
1
T T+ anZeR

, and therefore u = f * ¢, as desired.
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III. Wave Equations
6. (5/9)

Pick z; € R", and let R > 0. Pick ¢ > 0 and zyp € R" \ B(z1, R+ t). Notice that B(z1,R) N
B(l’o,to) = @, SO B(.’Eo,to) g R" \ B(l’l,R) Let C(Io,to) = {(I,t) | 0 S t S to, |:L' - $0| S to - t}.
Now, u =0 in C(xo,to), so u(z,tp) = 0 for all z € R" \ B(z1, R+ %), and u has compact support at
to in R". But ¢y was arbitrary, so u(-,t) has compact support for all ¢ > 0.

7. (3/9)

As with d’Alembert, assume u(z,t) = F(x + at) + G(z — at). Then u(z,0) = F(z) + G(z) = g(x), and
ut(x,0) = aFi(x) — aGi(z) = h(x), so aF(x) —aG(z) = / h(y)dy. Thus, we have the system

Solving for F' and G,

Fa) = 390+ 5o [ hw)an
26(0) = gla)~ & [ lw)ay

Thus,
u(z,t) = F(x + at) + G(z — at)

x+at 1 1 r—at
= Sz —at) — — h(y)d
et at)+ oo [ )y gote—a) - oo [ )y

r+at

<g(x +at)+ gz — at)) + % /w h(y)dy.

—at

N = N

IV. Miscellaneous



8. (5/9)

(a) Let o’ = —y, v =, 2/ = —1, and f'(t) = f(¢). Then we have to solve

o= -8 2

This is a well known ODE with solution z = ¢; cos(—t)+cg sin(—t) and y = ¢5 cos(—t) —cq sin(—t).
And clearly, z = —t + c3 and f(t) = csel.

When ¢t =0, 2 =0, so ¢c3 = 0 and thus t = —z. So & = ¢1 cos(z) + cosin(z) and y = co cos(z) —
¢y sin(z). We now solve for ¢; and ¢y. See that

T — cosin(z
o — 28in(z)

cos(z)
o
x —cgsin(z)
y = cacos(z) — o) sin(z)
ycos(z) = ¢z cos?(2) — wsin(z) + cosin?(z)
ycos(z) + zsin(z) = co.
Thus

x — (ycos(z) + xsin(z)) sin(z)
cos(z)

Cc1 =

x — ycos(z)sin(z) — zsin’(z)
cos(z)

x — ycos(z)sin(z) — z(1 — cos?(z2))
cos(z)

~ —ycos(z)sin(z) + x cos?(z)
cos(z)

=z cos(z) — ysin(z).
Now, ¢4 = ¢1 — ca = wcos(z) — ysin(z) — y cos(z) — xsin(z). Therefore,

—Zz

u(z,y,z) = (a: cos(z) — ysin(z) — y cos(z) — xsin(z))e
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(b) First, see that u(x,y,0) = x — y, as desired. Next, see that

Uy = (cos(z) - sin(z))e_z,
Uy = (— sin(z) — cos(z))e_z, and

—z

U, = ( — zsin(z) — ycos(z) + ysin(z) — z cos(z))e
- (x cos(z) — ysin(z) — y cos(z) — xsin(z))e
= (2y sin(z) — 2z cos(z))e‘z,

S0

—YUy + TUy — Uy = ( —ycos(z) —ysin(z) — xsin(z) + xcos(z))e‘z = u,
as desired.
9. 2.1.9
10. 2.1.10

2.4 Aug 2015
I. Laplace Equation

1. 2.2.3
2. (4/9)

Let £ > j, and let f = up —u;. Then f is a difference of harmonic functions, hence harmonic, and

moreover, since k > j, f > 0. Thus, on each connected open set U CC 2, by Harnack’s inequality

there exists a positive constant C' = C(U) such that sup f < C ir{}f f. Furthermore, since lim u,(zg)
U n—oo

converges, for sufficiently large k and j, [ux(z0) — u;(z0)| = f(wo) < &. Thus,
0<supf< Cigff < Cf(xg) <e.
U
Hence, f — 0 uniformly on compact subsets U of 0, so u, is uniformly Cauchy, hence converges
uniformly to a limit function w on . Furthermore, by a corollary to the converse to the mean value

property, since (u,) is a sequence of harmonic functions on € that converges uniformly on compact
sets of  to a limit u, w is harmonic on €.

3. 2.1.3
I1. Heat Equations
4. 2.2.5
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5. (1/9)

A straightforward, if tedious, computation:

0 -3 —a? 0? -3 —a?
ut—Au:—[xt2e4t}——{xt?eu]

ot Ox?
_x_t 2 e T +xt_23e_4ﬁ2x_2 — 2 |:t 2 e T +(L't_236_4zt —2x
2 42 Ox
= x__3t_756_4wt2 —+ xt 236_4022 5[}_2 — (t 236 4t2 —2x + t_T3e_4a22 —2z
2 4t2 4t
bt FeE T2 e _—2)
4t 4t 4t
-3z 3 T T a3 T
=S s ot T ot et T T et T e
2t2ew  Atzew  2tzew  2t2ew Adlzew  2zew
=0.
And by iterations of 'Hépital
=3 —3,=5 =1 —1,=3 1
lim :;vt_Tge_‘l_a;2 = lim xt? = lim m??’t - lim ot 22 = lim GTQt - lim 12t2 =
t—0+ t—0+ o t—0T % Z?’; t=0t pof 120t ety ch; t—0t 4305

This is surprising because u is not unique; the zero function also satisfies the differential equation.
ITI. Wave Equations
6. 2.3.6

7. (2/9)

Assume that u(z,t) = h(z)f(t); that is, that u is separable. Then ug = h(z) f”(¢) and Au = Ah(z) f(¢).
Furthermore, if w;(z,0) = 0, then f’(0) = 0. To build our solution, first let h(z) = g(x). Then

uy — Au =0, 50 g(@) " (t) = Ag(w)f(t) =0, 50 g(x) f"(t) = Ag(x) (1), so L = 29 = 2a8)

and therefore f(t) = 1 eVt 4 CQG_\/Xt. We may conveniently rewrite this as

f(t) =cie’ A coe” =t

=q (cos(\/_t) + isin(v/=\t) ) + e (cos (—V/=At) + isin(— \/—_)\t))
)
)

= ¢1 cos(V=Mt) + crisin(vV/—At) + ¢ cos(—v—At) + ¢oisin(—v/—At)
= ¢1 cos(vV=At) + crisin(vV/=At) 4 ¢ cos(v=At) — caisin(v/—At)
= (€1 + ¢2) cos(V=At) + (c1 — ca)isin(v/=At).
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Now we use the fact that f/(0) = 0 to solve for ¢; and cy. See that
f'(t) = —(c1 + c2) sin(WV=A)V=X + (c1 — c2)i cos(vV—=At)V=N, so
0=—(c1+c2)-0- VX4 (c1—ca)i-1-V=),
0 ¢; — ¢y = 0. Therefore f(t) = (c; 4 c2) cos(v/—At). And since u(x,0) must be g(z), we have that

u(z,0) = g(x)f(0) = g(x)(c1 + ¢2) cos(0) = g(x)(c1 + c2), and therefore ¢; + co = 1. This means that
u(z,t) = g(z) cos(v/—At).

IV. Miscellaneous

8. (Warning: 2.3.8, with a +!)

(a) Let o’ = —y, v =, 2/ = —1, and f'(t) = f(¢). Then we have to solve

/ /
;x| |0 —1
ol IR
This is a well known ODE with solution x = ¢y cos(—t)+cg sin(—t) and y = co cos(—t) —c; sin(—t).
And clearly, z = —t + ¢3 and f(t) = cqet.
When t =0, z =0, so ¢3 = 0 and thus t = —z. So z = ¢ cos(z) + cz2sin(z) and y = ¢z cos(z) —
¢y sin(z). We now solve for ¢; and ¢p. See that

T — cosin(z
o — 28in(z)

cos(z) '
S0
x —cgsin(z) |
y = cacos(z) — Teos@) sin(z)
ycos(z) = ¢z cos?(2) — wsin(z) + ¢ sin?(z)
ycos(z) + xsin(z) = cs.
Thus

x — (ycos(z) + xsin(z)) sin(z)
cos(z)

Cc1 =

x — ycos(z) sin(z) — xsin’(2)
cos(z)

x — ycos(z)sin(z) — z(1 — cos?(z))
cos(z)

—ycos(z) sin(z) + x cos?(z)
cos(z)

= zcos(z) — ysin(z).
Now, ¢4 = ¢1 + ca = wcos(z) — ysin(z) + y cos(z) + x sin(z). Therefore,

—Zz

u(z,y,z) = (:L' cos(z) — ysin(z) + y cos(z) + :vsin(z))e
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(b) First, see that u(x,y,0) = z + vy, as desired. Next, see that

<
8
I

cos(z) + sin(z))e_z7

—sin(z) + cos(z)) e %, and

z

S
N
I

£

<

|
I/~ /N o/

—xsin(z) — ycos(z) — ysin(z) + z cos(z))e*
- (az cos(z) — ysin(z) + ycos(z) + x sin(z))e_z
= ( —2zsin(z) — 2y cos(z))e‘z,

SO
YUy + TUy — Uy = (y cos(z) — ysin(z) + zsin(z) + mcos(z))e_z = u,
as desired.

9. 2.1.9
10. 2.2.10

2.5 Jan 2016
I. Laplace Equation

1. 2.2.3
2. 2.4.2
3. 2.1.1
I1. Heat Equations
4. 2.1.4
5. 2.1.5
ITI. Wave Equations
6. 2.2.6
7. 2.4.7
IV. Miscellaneous
8. 2.1.8
9. 2.1.9
10. 2.1.10

2.6 Aug 2016
I. Laplace Equation

1. 2.1.1
2. 2.1.2
3. 2.1.3
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I1. Heat Equations
4. (2/9)

This problem is in two parts:

(a) Derive a representation formula for the initial value problem:

{ Opu(z,t) — Au(x,t) =0  in R" x (0,00)
u(z,0) =g(z) € Cc (R™) in R" x {t = 0}.

(b) Write down a representation formula for the PDE

Ou—Au+cu=0 in R" x (0, 00)
u(z,0) = g(z) € CZ (R") inR" x {t =0}

where ¢ € R is a fixed constant.

5. 2.1.5
ITI. Wave Equations
6. 2.3.6
7. 2.3.7
IV. Miscellaneous
8. 2.4.8
9. 2.1.9
10. 2.2.10

2.7 Jan 2017
I. Laplace Equation

1. 2.2.3
2. 2.1.2
3. (2/9)

Let u € C (R") satisfy the mean value property

1

= d
) = BB@] Josen "

If ¢ € C (R") is radial (so ¢(z) = 1(|z|) for some smooth function ¢ on R) and satisfies
¢ =1and ¢.(z) = e"p(e'z), show that if £ > 0, then
Rn

u(z) = / u(y)pe(z — y)dy, for all z € R".

II. Heat Equations
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4. 2.1.4
5. 2.6.4
ITI. Wave Equations
6. 2.2.6
7. 2.3.6
IV. Miscellaneous
8. 2.3.8
9. 2.1.9
10. 2.2.10

2.8 Aug 2017
I. Laplace Equation
1. 2.2.3
2. 2.4.2
3. 2.7.3
I1. Heat Equations
4. 2.1.4
5. 2.1.5
ITI. Wave Equations
6. 2.2.6
7. 2.3.6
IV. Miscellaneous
8. 2.1.8
9. 2.1.9
10. 2.1.10

2.9 Jan 2018
I. Laplace Equation

1. 2.1.1
2. 2.4.2
3. 2.1.3

I1I. Heat Equations
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4. (1/9)

Assume that u(z,t) is separable, so u(x,t) = h(x)f(t). Then wu(z,
Ah(z)f(t). Thus 0 = uy — Au = h(z) f'(t) — Ah(x) f(t), so Ah(x)f(x)
To build the solution, let h(z) = g(x), and since Ag(x) = Ag(z), f((t)) =
and thus f(t) = Ce*. Since u(z,0) = g(x), u(z,0) = g(x)Ce g(x)C, so C = 1. Therefore,

u(z,t) = g(z)er
5. 2.2.5

t) = h(z)f'(t) and Au(z,t) =

Ah) _ £(1)
hix) f(t), and T3 = ry-

M — )\ so f/(8) = Af(8),

ITII. Wave Equations
6. 2.2.6
7. 2.3.7

IV. Miscellaneous
8. 2.4.8
9. 2.1.9
10. 2.2.10
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