
ODE/PDE Qual Questions Jan 2014 - Jan 2018

1 ODE

(Total distinct questions: 21. Format: do #1, choose 4 others.)

1.1 Jan 2014

1. (9/9)

(a) State and prove the existence and uniqueness theorem for general systems X ′ = f(t,X).

(b) Find a function f(X) not locally Lipschitz continuous and for which the system X ′ =
f(X), X(0) = X0 does not have a unique solution. Provide details for the existence of
multiple solutions.

(c) Provide a detailed example of a system X ′ = f(X) such that the interval of existence of
solutions depend on the initial data. Can this example be a linear system?

(a) Theorem. Let X0 ∈ U ⊆ Rn, where U is open, and let I = (−b, b) ⊆ R. Suppose F is continuous
on I × U and satisfies the Lipschitz estimate |F (t,X1) − F (t,X2)| ≤ L|X1 − X2| for t ∈ I and
X1, X2 ∈ U . Then there exists a unique solution to dX

dt = F (t,X), X(0) = X0, on some interval
J = (−a, a) ⊆ I.

Proof. First, observe that integrating dX
dt = F (t,X) gives

X(t) = X0 +

ˆ t

0

F (s,X(s))ds.

Existence will follow from Picard iteration. Set X0(t) = X0 and recursively define

Xk(t) = X0 +

ˆ t

0

F (s,Xk−1(s))ds.

We will show that as k →∞, Xk(t) converges to a unique solution. To do so, we will use the Con-

traction Mapping Thorem. Define S =

{
X(t) ∈ C(J,Rn) | X(0) = X0, sup

t∈J
‖X(t)−X0‖ ≤ ε

}
,

where J = [−a, a], a to be chosen later, and ε chosen such that B(X0, ε) ⊆ U . S is a complete
metric space under the metric d(X(t), Y (t)) = sup

t∈J
|X(t)− Y (t)|.

Define a map T on S by

(TX)(t) = X0 +

ˆ t

0

F (s,X(s))ds.

Now, J ⊆ I, so by the continuity of F and the Extreme Value Theorem, we setM = max
J×B(X0,ε)

|F (s, Y )|.

Choose a < ε
M . Then, T : S → S, since TX(0) = X0 and

|TX(t)−X0| ≤
∣∣∣∣ˆ t

0

F (s,X(s))ds

∣∣∣∣ ≤ aM < a
ε

a
= ε.
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By the Lipschitz hypothesis, if t ∈ J and Y,Z ∈ S,

|(TY )(t)− (TZ)(t)| =
∣∣∣∣ˆ t

0

F (s, Y (s))− F (s, Z(s))ds

∣∣∣∣
≤
ˆ t

0

|F (s, (Y (s))− F (s, Z(s))|ds

≤
ˆ t

0

L|Y (s)− Z(s)|ds

≤ aL sup
s∈J
|Y (s)− Z(s)|.

If in addition, a < 1
L , then T : S → S is a strict contraction, so by the Contraction Mapping

Theorem, there exists a unique X such that

X(t) = X0 +

ˆ t

0

F (s,X(s))ds.

(b) Consider x′ = 3x
2
3 , x(0) = 0. This example is not locally Lipschitz since at x = 0,

∣∣∣∣ 3y 2
3−0
y−0

∣∣∣∣ =∣∣∣∣ 3

y
1
3

∣∣∣∣ 6≤ L for y close to 0. And indeed, infinitely many solutions exist. For any c > 0,

x(t) =

{
0 if t ≤ c;
(t− c)3 if t > c

solves it.

(c) Such an example cannot be linear, since we can solve every linear system. Indeed, let f(X, t) be
linear in X, so f(X, t) = A(t)X +B(t). Then f(X, t)− f(Y, t) = A(t)X +B(t)−A(t)Y −B(t) =
A(t)(X − Y ), so |f(X, t) − f(Y, t)| ≤ |A(t)||X − Y |, and f is Lipschitz with constant |A(t)|. By
the existence and uniqueness theorem, f has a unique solution.

For our example, consider X ′ = 1 +X2, X(0) = X0. Then X(t) = tan(t− c) for any c = c(X0).
This is only continuous on −π2 + c < t < π

2 + c.

2. (5/9)

Prove that if F : O → Rn is locally Lipschitz and C ⊆ O is a compact set, then F |C is Lipschitz.

Suppose not. Then for all n ∈ N, there exists xn, yn ∈ C such that |F (xn)−F (yn)| > n|xn−yn|. Since
C is compact, there exists a subsequence nk such that xnk → x0 and ynk → y0 for x0, y0 ∈ C. Now,

|x0 − y0| = lim
nk→∞

|xnk − ynk | ≤ lim
nk→∞

1

nk
|F (xnk)− F (ynk)| ≤ lim

nk→∞

1

nk
2 sup
C
|F | = 0.

Thus, x0 = y0. Since F is locally Lipschitz, there exists Ux0
such that x0 ∈ Ux0

⊆ O with F Lipschitz
on Ux0

. And by convergence, there exists N such that if nk ≥ N , then xnk , ynk ∈ Ux0
. Let L be

the Lipschitz constant of F on Ux0
; then if nk > N,L, we have nk|xnk − ynk | < |F (xnk) − F (ynk)| ≤

L|xnk − ynk |, so nk ≤ L, a contradiction.

3. (5/9)

State and prove Grönwall’s inequality.

Theorem. Let u : [0, a]→ R be nonnegative and either
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• u′(t) ≤ ku, u(0) = C, u ∈ C1, or

• u(t) ≤ C +

ˆ t

0

ku(s)ds, u(0) = C, u ∈ C.

Then u(t) ≤ Cekt.

Proof. If in the first case, we show u(t)
ekt
≤ C. See that d

dt

[
ue−kt

]
= e−kt(u′ − ku) ≤ 0, since u′ ≤ ku.

Thus, ue−kt is decreasing, so ue−kt ≤ u(0) = C.

If in the second case, let v(t) = C +

ˆ t

0

ku(s)ds. Then v′(t) = ku ≤ kv and v ∈ C1, so apply the first

case.

4. (3/9)

Consider a one-parameter family of linear systems given by

X ′ =

[
a a
−1 0

]
.

(a) Sketch the path traced out by this family of linear systems in the trace-determinant plane
as a varies.

(b) Discuss any bifurcations that occur along this path and compute the corresponding values
of a.

(a) Notice that if A =

[
a a
−1 0

]
, then TrA = a and detA = a. Thus in the trace-determinant plane,

as a varies, we have

T

D
T 2 = 4D

a = 0

a = 4

(b) See that the graph in (a) immediately shows us that if a < 0, the system is a saddle, if 0 < a < 4,
the system is a spiral source, and if a > 4, the system is a source. Let’s also see this by checking

eigenvalues. See that λ = T±
√
T 2−4D
2 , so λ = a±

√
a2−4a
2 =

a±
√
a(a−4)

2 . When a < 0,
a−
√
a(a−4)

2

is negative, while
a+
√
a(a−4)

2 is positive, so we have a saddle. When 0 < a < 4,
a±
√
a(a−4)

2 is
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complex valued with real part a
2 > 0, so we have a spiral source. Finally, when a > 4,

a+
√
a(a−4)

2

and
a−
√
a(a−4)

2 are both positive, so we have a source.

Bifurcations occur at a = 0 and a = 4.

5. (2/9)

Consider the family of differential equations

x′ = ax− sinx,

where a is a parameter ranging from −∞ to ∞.

(a) Sketch the bifurcation diagram for this family of differential equations.

(b) Determine the qualitative behavior of all the bifurcations that occur as a increases from
−∞ to ∞.

6. (1/9)

Discuss the local and global behavior of solutions of

r′ = r − r3, θ′ = sin2 θ + a

at and near the bifurcation point a = −1. (For this problem, x = r cos θ and y = r sin θ.

7. (5/9)

Find the general solution to

X ′ = AX +G(t)

where A =

[
0 1
−1 0

]
and G(t) =

[
1
t

]
.

8. (6/9)

A Hamiltonian system on R2 is a system of the form

x′ =
∂H

∂y
(x, y)

y′ = −∂H
∂x

(x, y).

(a) Show that for a Hamiltonian system on R2, H is constant along every solution curve.

(b) Find a Hamiltonian function H for the system

x′ = y

y′ = −x3 + x.

4



(a) Let (x(t), y(t)) be a solution curve for the system. By the chain rule,

dH

dt
=
∂H

∂x
x′ +

∂H

∂y
y′ =

∂H

∂x

∂H

∂y
− ∂H

∂y

∂H

∂x
= 0.

(b) Since ∂H
∂y = y, H(x, y) = y2

2 + f(x). Since ∂H
∂x = x3 − x, H(x, y) = x4

4 −
x2

2 + g(y). Then, clearly,

one such H is H(x, y) = y2

2 + x4

4 −
x2

2 . It is immediate that ∂H
∂y = y = x′ and ∂H

∂x = x3 − x =

−
(
−x3 + x

)
= −y′.

9. (6/9)

Prove that the systems

X ′ =

[
λ 1
0 λ

]
X,

with λ < 0 and

X ′ =

[
−1 0
0 −1

]
X

are conjugate. (Do not invoke the theorem, explicitly prove the conjugacy for this special case).

1.2 Aug 2014

1. 1.1.1

2. 1.1.2

3. (5/9)

Let O ⊆ Rn be open and suppose F : O → Rn has Lipschitz constant K. Let Y (t) and Z(t) be
solutions of X ′ = F (X) which remain in O and are defined on the interval [t0, t1]. Prove that
for all t ∈ [t0, t1],

|Y (t)− Z(t)| ≤ |Y (t0)− Z(t0)|eK(t−t0).

Write ν(t) = |Y (t) − Z(t)|. Since Y (t) − Z(t) = Y (t0) − Z(t0) +

ˆ t

t0

(
F (s, Y (s)) − F (s, Z(s))

)
ds

and F is Lipschitz with constant K, i.e., |F (s, Y (s)) − F (s, Z(s))| ≤ K|Y (s) − Z(s)|, this means

ν(t) ≤ ν(t0) +

ˆ t

t0

Kν(s)ds. Now let u(t) = ν(t+ t0); thus u(t) = ν(t+ t0) ≤ ν(t0) +

ˆ t+t0

t0

Kν(s)ds =

u(0) +

ˆ t

0

Ku(s)ds. So by Grönwall, u(t) ≤ u(0)eKt, so ν(t+ t0) ≤ ν(t0)eKt, so ν(t) ≤ ν(t0)eK(t−t0),

so |Y (t)− Z(t)| ≤ |Y (t0)− Z(t0)|eK(t−t0), as desired.

4. (3/9)

Sketch the x and y nullclines and use this information to determine the nature of the phase
portrait for the system

x′ = x(y + 2x− 2), y′ = y(y − 1).
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The nulclines are where x′ = 0 and y′ = 0. When y′ = y(y − 1) = 0, y = 0 or y = 1. When
x′ = x(y + 2x− 2) = 0, x = 0 or y = −2x+ 2. The nulclines are therefore

x

y

We check signs to see the direction of the phase portrait across the nulclines. The resulting portrait is

x

y

The phase portrait can be completed by filling in arrows in the only way they can go.

5. (5/9)

Consider the function f(x) = x(1− x2).

(a) Sketch the phase line corresponding to the differential equation x′ = f(x).

(b) Let ga(x) = f(x) − ax. Sketch the bifurcation diagram corresponding to the family of
differential equations x′ = ga(x). Describe the bifurcations that occur in the family.

(c) Let ga(x) = f(x) + a. Sketch the bifurcation diagram corresponding to the family of
differential equations x′ = ga(x). Describe the bifurcations that occur in the family.

(a) Since x′ = x
(
1− x2

)
= x(1 − x)(1 + x), there are equilibria at x = 0, 1,−1. Choosing sample

points and analyzing sign, the phase line is therefore
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x

-1

0

1

Notice that 1 and −1 are sinks, while 0 is a source.

(b) Here, ga(x) = x
(
1− x2

)
− ax = x

(
1− x2 − a

)
. See that when a = 0, we have the phase line in

part (a), and when a = 1, g1(x) = −x3, which has a single equilibrium at x = 0, a source. It
is an easy exercise of picking a values in the regions (−∞, 0), (0, 1), and (1,∞) to see that the
complete picture must be

x

a

a = 0 a = 1

-1

0

1

0

A bifurcation occurs at a = 1, where we switch from three equilibria when a < 1 to a single sink
when a > 1.

(c) Since ga(x) = x
(
1− x2

)
+ a, and varying a does not affect x, the bifurcation diagram will be

a

x

a = 0

-1

0

1

It only remains to find the bifurcation points, where the system switches from having one sink to
three equilibria and from three equilibria to one sink. See that these points occur at the repeated
roots of the cubic. In other words, to find a bifurcation point a, we solve (x − α)2(x − β) =
−x3 + x + a for a. Let’s equate coefficients; if (x − α)2(x − β) =

(
x2 − 2αx+ α2

)
(x − β) =

x3− 2αx2 +α2x−βx2 + 2αβx−α2β = x3− (2α+β)x2 + (α2 + 2αβ)x−α2β = −x3 +x+ a, then

−x3 + (2α+ β)x2 −
(
α2 + 2αβ

)
x+ α2β = −x3 + x+ a,

so  2α+ β = 0
−α2 − 2αβ = 1
α2β = a

So β = −2α, and thus −α2 − 2αβ = −α2 − 2α(−2α) = −α2 + 4α2 = 3α2 = 1, so α = ±
√

1
3 ,

β = ∓2
√

1
3 , and therefore a = ∓2

3

√
1
3 are our bifurcation points.
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6. (4/9)

For the nonlinear system x′ = cos y, y′ = cosx on the set O = (0, 2π)× (0, 2π),

(a) Find all of the equilibrium points in O and describe the behavior of the associated lin-
earized systems.

(b) Sketch stable and unstable curves on O for any saddle points of this system.

7. (4/9)

Find the general solution and the phase portrait of the system

X ′ =

[
0 1
−1 0

]
X +

[
cos t
sin t

]
.

8. 1.1.8

9. (6/9)

Consider a one parameter family of linear systems given by X ′ =

[
2 a
1 2

]
X, where a ∈ R.

(a) Sketch the path traced out by this family of linear systems in the trace-determinant plane
as a varies.

(b) For which sets of a are the systems all topologically conjugate to each other? Classify the
equilibrium points for each set (i.e., sink, source, saddle, or none of these).

(c) For which values of a is the system non-hyperbolic?

(a) See that if A =

[
2 a
1 2

]
, then TrA = 4 and detA = 4 − a, so in the trace-determinant plane, we

see that as a varies, we get

T

D
T 2 = 4D

a = 4

a = 0
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(b) We can tell by the trace-determinant plane that when a ∈ (4,∞), the systems are all topologically
conjugate to each other and saddles, when a ∈ (0, 4), the systems are all topologically conjugate
and sources, and when a ∈ (−∞, 0), the systems are all topologically conjugate and spiral sources,

but let us show this using eigenvalues as well. Since λ = T±
√
T 2−4D
2 , we have λ =

4±
√

42−4(4−a)

2 =
4±
√

4a
2 = 2±

√
a. When a > 4, we have two real eigenvalues, one positive and one negative, so the

system is a saddle. When 0 < a < 4, both 2 +
√
a and 2 −

√
a are positive, so we have sources.

Finally, when a < 0, we have complex eigenvalues with real part 2 > 0, so we get spiral sources,
all as claimed.

(c) The system is non-hyperbolic when a = 0 and a = 4.

1.3 Jan 2015

1. 1.1.1

2. 1.2.3

3. 1.1.3

4. 1.2.9

5. 1.1.5

6. 1.2.6

7. 1.1.7

8. 1.1.8

9. 1.1.9

1.4 Aug 2015

1. 1.1.1

2. 1.1.2

3. 1.1.3

4. 1.1.4

5. (5/9)

Consider the first-order nonautonomous equation with x′ = a(t)x, where a(t) is differentiable
and periodic with period T . Compute the Poincaré map for this equation. Prove that all
solutions of this equation are periodic with period T if and only if

ˆ T

0

a(s)ds = 0.
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First we find the Poincaré map. Observe as

x′ = a(t)x

x′

x
= a(t)

ˆ t

0

x′

x
ds =

ˆ t

0

a(s)ds

ln(x(t))− ln(x(0)) =

ˆ t

0

a(s)ds

ln

(
x(t)

x(0)

)
=

ˆ t

0

a(s)ds

x(t)

x(0)
= exp

(ˆ t

0

a(s)ds

)
x(t) = x(0) exp

(ˆ t

0

a(s)ds

)
.

Then ϕ(x(0), 0) = x(0) exp

(ˆ 0

0

a(s)ds

)
= x(0) and ϕ(x(0), T ) = x(0) exp

(ˆ T

0

a(s)ds

)
= p(x(0)),

so ϕ(x, t) = x exp

(ˆ t

0

a(s)ds

)
.

To show that all solutions are periodic with period T if and only if

ˆ T

0

a(s)ds = 0, we let x be an

arbitrary periodic solution with period T . Then ϕ(x, T )−ϕ(x, 0) = 0 if and only if x exp

(ˆ T

0

a(s)ds

)
−

x = 0, so x

(
exp

(ˆ T

0

a(s)ds

)
− 1

)
= 0, so exp

(ˆ T

0

a(s)ds

)
= 1, so

ˆ T

0

a(s)ds = 0, as desired.

6. 1.2.4

7. 1.2.7

8. 1.1.8

9. 1.1.9

1.5 Jan 2016

1. 1.1.1

2. 1.2.3

3. (2/9)

Prove the following general fact: if C ≥ 0 and u, v : [0, β]→ R are continuous and nonnegative,
and

u(t) ≤ C +

ˆ t

0

u(s)v(s)ds

for all t ∈ [0, β], then u(t) ≤ CeV (t) where

V (t) =

ˆ t

0

v(s)ds.
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Let h(t) = C +

ˆ t

0

u(s)v(s)ds, so by assumption, u(t) ≤ h(t). By construction, h′(t) = u(t)v(t). Then

h′(t)
h(t) = u(t)v(t)

h(t) ≤ h(t)v(t)
h(t) = v(t), so d

dt [ln(h(t))] ≤ v(t). As u and v are nonnegative,

ˆ t

0

d

dt
[ln(h(s))] ds ≤

ˆ t

0

v(s)ds = V (t)

ln(h(t))− ln(h(0)) ≤ V (t)

ln

(
h(t)

h(0)

)
≤ V (t)

h(t)

h(0)
≤ eV (t)

h(t) ≤ h(0)eV (t)

u(t) ≤ h(t) ≤ CeV (t),

as desired.

4. 1.2.9

5. 1.4.5

6. 1.2.6

7. 1.1.7

8. 1.2.5

9. 1.1.9

1.6 Aug 2016

1. 1.1.1

2. 1.1.2

3. 1.1.3

4. 1.2.9

5. 1.4.5

6. (2/9)

For each of the following non-linear systems find the equilibrium points and describe the behavior
of the associated linearized system. Describe the phase portrait of the non-linear system and
compare its solutions with the solution of the linearized system near the equilibrium point.

x′ = x+ y2, y′ = y

x′ = x
(
x2 + y2

)
, y′ = y

(
x2 + y2

)
.

7. 1.2.7

8. 1.2.5

9. 1.1.9
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1.7 Jan 2017

1. 1.1.1

2. 1.1.2

3. 1.5.3

4. 1.2.9

5. 1.4.5

6. 1.1.8

7. 1.1.7

8. 1.2.6

9. (Warning: 1.2.5, with a +!)

Consider the function f(x) = x
(
1 + x2

)
.

(a) Sketch the phase line corresponding to the differential equation x′ = f(x).

(b) Let ga(x) = f(x) − ax. Sketch the bifurcation diagram corresponding to the family of
differential equations x′ = ga(x). Describe the bifurcations that occur in the family.

(c) Let ga(x) = f(x) + a. Sketch the bifurcation diagram corresponding to the family of
differential equations x′ = ga(x). Describe the bifurcations that occur in the family.

(a) Note that actually the + sign makes a significant difference in several parts, specifically because
1 + x2 no longer factors in the reals. For part (a), x = 0 is the only equilibrium, and the phase
line is

x

0

(b) When ga(x) = x
(
1 + x2

)
− ax = x

(
1 + x2 − a

)
, see that we have almost the same behavior as

1.2.5. Choosing a = 1, g1(x) = x3, and for larger a, the quadratic piece now factors. So see that
the bifurcation diagram must be

a

x

a = 0 a = 1
0 0

(c) Here, ga(x) = x
(
1 + x2

)
+ a = x3 + x + a. Since x3 + x : R → R is bijective, this means there

are no repeated roots, and thus no bifurcation points; the bifurcation diagram is simply
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a

x

a = 0
0

1.8 Aug 2017

1. 1.1.1

2. 1.1.3

3. 1.2.9

4. 1.2.3

5. 1.2.4

6. 1.6.6

7. 1.2.7

8. 1.2.5

9. 1.1.8

1.9 Jan 2018

1. 1.1.1

2. 1.1.3

3. 1.1.4

4. 1.2.3

5. 1.1.9

6. (1/9)

For the nonlinear system x′ = sinx, y′ = cos y on the set O =
(
−π2 ,

3π
2

)
× (0, 2π), describe the

phase portrait (carefully justifying the behavior of the system near equilibrium points). Clearly
identify any stable or unstable curves.

7. 1.1.7

8. 1.4.5

9. (1/9)

Sketch the phase portrait of the Hamiltonian system x′ = x2 − 2xy, y′ = y2 − 2xy. Be sure to
justify your sketch near any non-hyperbolic points.

13



If ∂H
∂y = x′ = x2 − 2xy, then H(x, y) = x2y − xy2 + f(x), and if ∂H

∂x = −y′ = −y2 + 2xy, then

H(x, y) = −y2x+x2y+ g(y), so H(x, y) = x2y−xy2. If H(x, y) = 0, then xy2 = x2y, so we have level
curves x = 0, y = 0, and y = x.

To analyze equilibria, see that x′ = y′ = 0 if and only if (x, y) = (0, 0). If we consider the linearized
system at (0, 0), we have

DF =

[
∂x′

∂x
∂x′

∂y
∂y′

∂x
∂y′

∂y

]
=

[
2x− 2y −2x
−2y 2y − 2x

]
,

so

DF |(0,0) =

[
0 0
0 0

]
.

Thus the linearized system at (0, 0) is non-hyperbolic, and we gain no information. We thus analyze
direction on level curves. See that if x = 0, then x′ = 0 and y′ > 0, if y = 0, then x′ > 0 and y′ = 0,
and if y = x, then x′ < 0 and y′ < 0. We have the following phase diagram.

x

y

y = x

y = 0

x = 0

Solution curves can be filled in as desired.

2 PDE

(Total distinct questions: 24. Format: do 5, at least one from each group.)

2.1 Jan 2014

I. Laplace Equation

1. (5/9)

Let (un) be a sequence of harmonic functions in Ω ⊆ Rn where Ω is a bounded, open set. If un
converges uniformly on compact subsets of Ω, then is the limit function u a harmonic function?
Provide an argument or a counterexample.

Yes, the limit function u must be harmonic. We provide a proof. As each un is harmonic, it satisfies

the mean value property; i.e., un(x) =

 
∂B(x,r)

undσ for every B(x, r) ⊆ Ω. By uniform convergence

in σ(y) on B(x, r), we can interchange limits; thus, we must have that

u = limun = lim

 
∂B(x,r)

undσ =

 
∂B(x,r)

limundσ =

 
∂B(x,r)

udσ.

Since this holds for every B(x, r) ⊆ Ω, by the converse to the mean value property, u is harmonic.
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2. (5/9)

This problem has two parts.

(a) State and prove the Harnack inequality for harmonic functions in an open set of Rn.

(b) Use the Harnack inequality to answer the following questions: Is it possible to find a
nonnegative harmonic function f defined in a neighborhood of 0 ∈ Rn satisfying f(0) = 0
and so that f is not identically 0? What is the answer if we remove the sign condition?

(a) Theorem. If u is a nonnegative harmonic function on U ⊂⊂ Ω, connected and open, then there
exists a positive constant C such that sup

U
u ≤ C inf

U
u.

Proof. Let r = 1
4 dist(U, ∂Ω). Choose x, y ∈ U so that |x− y| < r. Then

u(x) =

 
B(x,2r)

udz =
1

ωn2nrn

ˆ
B(x,2r)

udz ≥ 1

ωn2nrn

ˆ
B(y,r)

udz =
1

2n

 
B(y,r)

udz =
1

2n
u(y).

Thus, 2nu(x) ≥ u(y) if |x − y| < r. Since U is connected and U is compact, cover U by a finite
chain of balls {Bj | j = 1, ..., N}, each with radius r

2 and Bj ∩ Bj−1 6= ∅ for j = 2, ..., N . Thus,

u(y) ≤ 2nNu(x) for all x, y ∈ U .

(b) It is not possible. Let U be a neighborhood of 0 such that f ≥ 0 on U . Since f is harmonic and
nonnegative, by Harnack, there exists C such that supU f ≤ C infU f . Since f is nonnegative and
f(0) = 0, infU f = 0. Thus supU f = 0, and f ≡ 0.

On the other hand, if we remove the sign condition, an easy example arises by letting n = 1
and considering f(x) = x. Then, ∆f ≡ 0, so f is harmonic, and around any neighborhood of 0,
f(0) = 0 but f 6≡ 0.

3. (5/9)

This problem is divided into two parts:

(a) State and prove the mean value property for harmonic functions.

(b) State and prove the strong maximum principle for harmonic functions.

(a) Theorem. Let U ⊆ Rn be open. If u ∈ C2(U) is harmonic, then

u(x) =

 
∂B(x,r)

udσ =

 
B(x,r)

udy

for every B(x, r) ⊆ U .

Proof. Set ϕ(r) =

 
∂B(x,r)

u(y)dσ(y). So

ϕ(r) =
1

nωnrn−1

ˆ
∂B(x,r)

u(y)dσ(y) =
1

nωn

ˆ
∂B(x,r)

u(x+ rz)dσ(z) =

 
∂B(0,1)

u(x+ rz)dσ(z).
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Now, see that

ϕ′(r) =

 
∂B(0,1)

∂

∂r
u(x+ rz)dσ(z)

=

 
∂B(0,1)

∇u(x+ rz) · zdσ(z)

=

 
∂B(x,r)

∇u(y) · y − x
r

dσ(y)

=

 
∂B(x,r)

∇u(y) · ν(y)dσ(y)

=

 
∂B(x,r)

du(y)

dν
dσ(y)

=
1

|∂B(x, r)|

ˆ
∂B(x,r)

du

dν
dσ(y)

=
1

|∂B(x, r)|

ˆ
∂B(x,r)

∆u(y)dy

= 0,

so ϕ(r) is constant. Thus

ϕ(0) = lim
t→0+

ϕ(t) = lim
t→0+

 
∂B(x,t)

u(y)dσ(y) = u(x),

so u(x) =

 
∂B(x,r)

u(y)dσ(y). Finally, see that

ˆ
B(x,r)

udy =

ˆ r

0

(ˆ
∂B(x,r)

udσ

)
ds =

ˆ r

0

nωns
−n−1u(x)ds = u(x)nωn

sn

n

∣∣∣∣n
0

= u(x)|B(x, r)|,

so divide by |B(x, r)| to get the result.

(b) Theorem. Suppose u ∈ C
(
U
)

is harmonic on U . Then max
U

u = max
∂U

u, and if U is connected

and there exists a point x0 ∈ U such that u(x0) = max
U

u, then u is constant on U .

Proof. Suppose there exists x0 ∈ U such that u(x0) = max
U

u = M . Then by the mean value

property, M = u(x0) =

 
B(x0,r)

udy ≤ M . Equality can hold only if u ≡ M , so u(y) = M for all

y ∈ B(x0, r). Thus the set {x ∈ U | u(x) = M} is clopen in U , so if U is connected, all of U . If
U is not connected, U is a union of connected components, so the first part follows by applying
the argument to each connected component.

II. Heat Equations

4. (4/9)
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Denote by B(0, 1) the unit ball in Rn. Let g : B(0, 1)→ R be a continuous function such that
g(x) = 1 for x ∈ ∂B(0, 1). Let u ∈ C∞(B(0, 1) × [0,∞)) be caloric in B(0, 1) × (0,∞) and
satisfy boundary/initial data:{

u(x, 0) = g(x) x ∈ B(0, 1),
u(x, t) = 1 x ∈ ∂B(0, 1), t > 0

Prove that the energy E(t) =

ˆ
B(0,1)

|∇u(x, t)|2 dx is a non-increasing function of t.

See that

d

dt
[E(t)] =

d

dt

[ˆ
B(0,1)

|∇u(x, t)|2dx

]

=

ˆ
B(0,1)

2∇xu · ∇tutdx

= −2

ˆ
B(0,1)

∆xu · utdt+ 2

ˆ
∂B(0,1)

du

dν
· du
dt
σ(x).

But on ∂B(0, 1), u(x, t) ≡ 1. This means du
dt ≡ 0 on ∂B(0, 1), so

d

dt
[E(t)] = −2

ˆ
B(0,1)

∆x · utdt.

Since u is caloric, ut = ∆xu, so

d

dt
[E(t)] = −2

ˆ
B(0,1)

∆xu ·∆xudx = −2

ˆ
B(0,1)

|∆xu|2dx ≤ 0,

so E(t) is non-increasing, as desired.

5. (6/9)

This problem is divided in two parts:

(a) Let ϕ : R→ R be smooth and convex. Show that if u is caloric, then ϕ(u) is sub-caloric.

(b) If u is a caloric function, show that v = |∇u|2 + ut
2 is sub-caloric (i.e., ∂tv −∆v ≤ 0).

(a) First note that

∂

∂xi

[
ϕ(u)

]
= ϕ′(u) · ∂u

∂xi
, so

∂2

∂xi2

[
ϕ(u)

]
= ϕ′′(u) · ∂u

∂xi
· ∂u
∂xi

+ ϕ′(u) · ∂
2u

∂xi2
, so

∆

[
ϕ(u)

]
=

n∑
i=1

(
ϕ′′(u) ·

(
∂u

∂xi

)2

+ ϕ′(u) · ∂
2u

∂xi2

)

=

n∑
i=1

ϕ′′(u) ·
(
∂u

∂xi

)2

+ ϕ′(u) ·∆u.
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Then, as u is caloric, ∂u
∂t −∆u = 0, and

(
ϕ(u)

)
t
−∆

(
ϕ(u)

)
= ϕ′(u) · ∂u

∂t
−

n∑
i=1

ϕ′′(u) ·
(
∂u

∂xi

)2

− ϕ′(u) ·∆u

= ϕ′(u) ·
(
∂u

∂t
−∆u

)
−

n∑
i=1

ϕ′′(u) ·
(
∂u

∂xi

)2

= ϕ′(u) · (0)−
n∑
i=1

ϕ′′(u) ·
(
∂u

∂xi

)2

= −
n∑
i=1

ϕ′′(u) ·
(
∂u

∂xi

)2

≤ 0,

since ϕ convex means ϕ′′(u) ≥ 0.

(b) Notice that v can be thought of as a function of u; i.e., v(u) = |∇u|2 + ut
2. Notice that ∇[·]

and ∂
∂t [·] are both linear operations, hence convex, that |·|2 and ·2 are both convex, and that

the summation of convex functions is convex. Therefore, |∇[·]|2 +
(
∂
∂t [·]

)2
is a smooth, convex

function, so by part (a), since u is caloric, v = v(u) is sub-caloric.

III. Wave Equations

6. (1/9)

Suppose that u is a C2 solution of the wave equation in Rn × R. Show that if u(·, t0) has
compact support in Rn for some t0, then u(·, t) has compact support in Rn for all t.

This is false. See Homework 5.

7. (2/9)

(Stokes’ Rule) Assume u solves the initial value problem{
utt −∆u = 0 in Rn × (0,∞)
u = 0, ut = h on Rn × {t = 0}

where h ∈ C∞C (Rn). Show that v = ut solves{
vtt −∆v = 0 in Rn × (0,∞)
v = h, vt = 0 on Rn × {t = 0}.

If utt−∆u = 0, then, differentiating in t, we have uttt− (∆u)t = 0. Since u ∈ C2, (∆u)t = ∆ (ut), and
since v = ut, we have that vtt −∆v = 0 in Rn × (0,∞). Furthermore, since ut = h on Rn × {t = 0},
v = h on Rn × {t = 0}. Finally, we must show that vt(x, 0) = 0. See that

vt(x, 0) = utt(x, 0) = lim
t→0+

utt(x, t) = lim
t→0+

∆u(x, t) = ∆u(x, 0) = ∆(0) = 0,

as desired.

IV. Miscellaneous

8. (4/9)
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Euler’s PDE for a homogeneous function u(x1, ..., xn) is

n∑
k=1

xk
∂u

∂xk
= αu

where α 6= 0 is a constant.

(a) Solve Euler’s PDE with initial condition u(x1, ..., xn−1, 1) = h(x1, ..., xn−1) for some func-
tion h : Rn−1 → R.

(b) A function g is homogeneous of order β if g(λx) = λβg(x). Determine to what degree
your solution u from (a) is homogeneous.

9. (9/9)

If (1 −∆)3u = f and u ∈ L2 (Rn), f ∈ Hs (Rn) for some s ≥ 0, use the Fourier transform to
show directly that u ∈ Hs+6 (Rn).

First note that g ∈ Hk (Rn) if and only if ĝ · (1 + |ξ|2)
k
2 ∈ L2 (Rn). Note also that the Fourier

transform of (1 − ∆) is 1 + 4π2|ξ|2, so the Fourier transform of (1 − ∆)3 is
(
1 + 4π2|ξ|2

)3
. Then,(

1 + 4π2|ξ|2
)3
û = f̂ , so

û =
f̂

(1 + 4π2|ξ|2)
3 ·
(

1 + |ξ|2

1 + |ξ|2

)3

.

Since f ∈ Hs (Rn), f̂ · (1 + |ξ|2)
s
2 ∈ L2 (Rn). Furthermore, 1+|ξ|2

(1+4π2|ξ|2)3
is smooth and bounded, so(

1+|ξ|2
1+4π2|ξ|2

)3

is. Then, observe as

û ·
(
1 + |ξ|2

) s+6
2 =

f̂

(1 + 4π2|ξ|2)
3 ·
(

1 + |ξ|2

1 + |ξ|2

)3

· (1 + |ξ|2)
s+6
2

=

(
1 + |ξ|2

1 + 4π2|ξ|2

)3

· f̂ · (1 + |ξ|2)
s
2 +3

(1 + |ξ|2)3

=

(
1 + |ξ|2

1 + 4π2|ξ|2

)3

· f̂ · (1 + |ξ|2)
s
2 .

Therefore, û · (1 + |ξ|2)
s+6
2 ∈ L2 (Rn), and thus, u ∈ Hs+6 (Rn), as desired.

10. (4/9)

Let a ∈ R. Compute the Fourier transform of e−aπx
2

where x ∈ R.

We compute f̂(ξ) =

ˆ
R

e−2πix·ξf(x)dx. If f(x) = e−aπx
2

, then f ′(x) = −2aπxe−aπx
2

= −2aπxf(x).
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Thus, take the Fourier transform of both sides:

(f ′)̂ (ξ) = (−2aπξf )̂(ξ)

2πiξf̂(ξ) = −2aπ · i
2π

(
f̂(ξ)

)′
2πiξf̂(ξ) = −ai

(
f̂(ξ)

)′
−2π

a
ξf̂(ξ) =

(
f̂(ξ)

)′
.

Thus, f̂(ξ) = C exp
(
−2π
a ·

ξ2

2

)
, and C = f̂(0) =

ˆ
R

f(x)dx =

ˆ
R

e−aπx
2

dx =
1√
a

. Therefore,

f̂(ξ) =
1√
a
e
−πξ2
a .

2.2 Aug 2014

I. Laplace Equation

1. 2.1.1

2. 2.1.2

3. (6/9)

Let Ω ⊆ Rn be a bounded smooth domain. Let λ ∈ R and u ∈ C2
(
Ω
)

such that ∆u = λu on
Ω and u|∂Ω = 0. Prove that either u = 0 on Ω or λ < 0.

By Green’s Theorem,ˆ
Ω

∇u · ∇udx = −
ˆ

Ω

u∆udx+

ˆ
∂Ω

u · du
dν
dσ = −

ˆ
Ω

u · λudx+

ˆ
∂Ω

u · du
dν
dσ.

Since u ≡ 0 on ∂Ω,

ˆ
Ω

∇u · ∇udx = −
ˆ

Ω

λu2dx. Thus,

ˆ
Ω

(
|∇u|2 + λu2

)
dx = 0. If λ < 0 there is

nothing to show, so assume λ ≥ 0 and consider the following cases.

If λ > 0, then

ˆ
Ω

(
|∇u|2 + λu2

)
dx = 0 for all x forces |∇u|2 + λu2 = 0. Everything is nonnegative,

forcing u ≡ 0.

If λ = 0, then ∆u = 0, so u is harmonic. By the maximum and minimum principles, u attains its max
and min on ∂Ω, so maxu = minu = 0, so u ≡ 0.

Therefore, either λ < 0, or u ≡ 0.

II. Heat Equations

4. 2.1.5

5. (4/9)

Suppose that c is a constant and u is a smooth solution of{
ut −∆u+ cu = f in Rn × (0,∞)
u = g on Rn × {t = 0},

where f ∈ CC (Rn × [0,∞)) and g ∈ CC (Rn). Show that there exists a constant C > 0 so that

|u(x, t)| < Ce−ct.
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We use integration factors. If ut −∆u+ cu = f , then ute
ct −∆uect + cuect = fect. Notice that since

(uect)t = ute
ct + ucect and since ∆uect = ∆ (uect) as ∆ = ∆x, we get (uect)t −∆ (uect) = ectf .

We have thus shown that uect must solve the non-homogeneous heat equation, and therefore it is
well-known that

uect =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s) · ectf(y, s)dyds+

ˆ
Rn

Φ(x− y, t) · g(y)dy,

where

Φ(x, t) =
1

(4πt)
n
2
· e
−|x|2

4t

is the fundamental solution of the heat equation. (Note that what Φ is does not matter here, only thatˆ
Rn

Φ(x, t)dx = 1.)

Now, since f and g are compactly supported, we know that |ect · f | ≤ M and |g| ≤ N for some
M,N > 0. By the triangle inequality and since Φ ≥ 0,∣∣uect∣∣ ≤ ˆ t

0

ˆ
Rn

|Φ(x− y, t− s)| ·
∣∣ect · f ∣∣ dyds+

ˆ
Rn

|Φ(x− y, t)| · |g|dy

≤M
ˆ t

0

ˆ
Rn

Φ(x− y, t− s)dyds+N

ˆ
Rn

Φ(x− y, t)dy

= M

ˆ t

0

ds+N

= Mt+N.

Thus, |u| ≤ (Mt+N)e−ct. For t > 0, (Mt+N)e−ct is bounded. Thus it reaches a maximum at some
t0 > 0. Let C = Mt0 +N ; then |u(x, t)| ≤ Ce−ct, as desired.

III. Wave Equations

6. (5/9)

Let u solve the initial value problem for the wave equation in one dimension:{
utt − uxx = 0 in R× (0,∞)
u = g, ut = h on R× {t = 0}.

Suppose g and h have compact support. The kinetic energy is k(t) =
1

2

ˆ ∞
−∞

ut
2(x, t)dx and

the potential energy is p(t) =
1

2

ˆ ∞
−∞

ux
2(x, t)dx. Prove k(t) = p(t) for all large enough times t.

7. 2.1.7

IV. Miscellaneous

8. 2.1.8

9. 2.1.9

10. (5/9)

Let ϕ(x) = 1
2e
−|x| on R. Use the Fourier transform to derive the solution u = f ∗ ϕ of the

differential equation u− u′′ = f .
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Note that

u(x, t) =

ˆ
R

e2πix·ξû(ξ, t)dξ, so

(1−∆)u =

ˆ
R

e2πix·ξ(1 + 4π2|ξ|2)ûdξ.

Also, f =

ˆ
R

e2πix·ξ f̂dξ.

Thus,

0 = (1−∆)u− f

0 =

ˆ
R

e2πix·ξ
(

(1 + 4π2|ξ|2)û− f̂
)
dξ.

This forces

0 = (1 + 4π2|ξ|2)û− f̂

û = f̂ · (1 + 4π2|ξ|2)−1

u = f ∗
(
(1 + 4π2|ξ|2)−1

)∨
.

From the other direction,

ϕ̂ =

ˆ
R

e−2πix·ξϕ(x)dx

ˆ
R

e−2πix·ξ 1

2
e−|x|dx

=
1

2

ˆ 0

−∞
ex(1−2πiξ)dx+

1

2

ˆ ∞
0

e−x(1+2πiξ)dx

=
1

2

ex(1−2πiξ)

1− 2πiξ

∣∣∣∣0
−∞

+
1

2

e−x(1+2πiξ)

1 + 2πiξ

∣∣∣∣∞
0

=
1

2

(
1

1− 2πiξ
− 0− 0 +

1

1 + 2πiξ

)
=

1

2

(
1 + 2πiξ + 1− 2πiξ

(1− 2πiξ)(1 + 2πiξ)

)
=

1

1 + 4π2|ξ|2
.

So ϕ =
(
(1 + 4π2|ξ|2)−1

)∨
, and therefore u = f ∗ ϕ, as desired.

2.3 Jan 2015

I. Laplace Equation

1. 2.2.3

2. 2.1.2

3. 2.1.3

II. Heat Equations

4. 2.2.5

5. 2.1.5
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III. Wave Equations

6. (5/9)

Suppose that u is a C2 solution of the wave equation in Rn × R. Show that if u(·, t0) and
ut(·, t0) have compact support in Rn for some t0, then u(·, t) has compact support in Rn for
all t ≥ 0.

Pick x1 ∈ Rn, and let R > 0. Pick t0 > 0 and x0 ∈ Rn \ B(x1, R+ t0). Notice that B(x1, R) ∩
B(x0, t0) = ∅, so B(x0, t0) ⊆ Rn \ B(x1, R). Let C(x0, t0) = {(x, t) | 0 ≤ t ≤ t0, |x − x0| ≤ t0 − t}.
Now, u ≡ 0 in C(x0, t0), so u(x, t0) = 0 for all x ∈ Rn \ B(x1, R+ t0), and u has compact support at
t0 in Rn. But t0 was arbitrary, so u(·, t) has compact support for all t ≥ 0.

7. (3/9)

Derive a d’Alembert-like formula for u if a > 0 and u solves the equation utt − a2uxx = 0 in R× (0,∞)
u(x, 0) = g(x) on R× {t = 0}
ut(x, 0) = h(x) on R× {t = 0}

where g is continuous and h is continuously differentiable.

As with d’Alembert, assume u(x, t) = F (x+ at) +G(x− at). Then u(x, 0) = F (x) +G(x) = g(x), and

ut(x, 0) = aFt(x)− aGt(x) = h(x), so aF (x)− aG(x) =

ˆ x

−∞
h(y)dy. Thus, we have the system

 F (x) +G(x) = g(x)

F (x)−G(x) =
1

a

ˆ x

−∞
h(y)dy.

Solving for F and G,

2F (x) = g(x) +
1

a

ˆ x

−∞
h(y)dy

F (x) =
1

2
g(x) +

1

2a

ˆ x

−∞
h(y)dy;

2G(x) = g(x)− 1

a

ˆ x

−∞
h(y)dy

G(x) =
1

2
g(x)− 1

2a

ˆ x

−∞
h(y)dy.

Thus,

u(x, t) = F (x+ at) +G(x− at)

=
1

2
g(x+ at) +

1

2a

ˆ x+at

−∞
h(y)dy +

1

2
g(x− at)− 1

2a

ˆ x−at

−∞
h(y)dy

=
1

2

(
g(x+ at) + g(x− at)

)
+

1

2a

ˆ x+at

x−at
h(y)dy.

IV. Miscellaneous
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8. (5/9)

The problem has two parts.

(a) Solve the partial differential equation

−yux + xuy − uz = u, for (x, y) ∈ R2 and z > 0

u(x, y, 0) = x− y, for (x, y) ∈ R2.

(b) Prove that your solution solves the PDE.

(a) Let x′ = −y, y′ = x, z′ = −1, and f ′(t) = f(t). Then we have to solve

X ′ =

[
x
y

]′
=

[
x′

y′

]
=

[
0 −1
1 0

]
X.

This is a well known ODE with solution x = c1 cos(−t)+c2 sin(−t) and y = c2 cos(−t)−c1 sin(−t).
And clearly, z = −t+ c3 and f(t) = c4e

t.

When t = 0, z = 0, so c3 = 0 and thus t = −z. So x = c1 cos(z) + c2 sin(z) and y = c2 cos(z) −
c1 sin(z). We now solve for c1 and c2. See that

c1 =
x− c2 sin(z)

cos(z)
,

so

y = c2 cos(z)− x− c2 sin(z)

cos(z)
· sin(z)

y cos(z) = c2 cos2(z)− x sin(z) + c2 sin2(z)

y cos(z) + x sin(z) = c2.

Thus

c1 =
x− (y cos(z) + x sin(z)) sin(z)

cos(z)

=
x− y cos(z) sin(z)− x sin2(z)

cos(z)

=
x− y cos(z) sin(z)− x(1− cos2(z))

cos(z)

=
−y cos(z) sin(z) + x cos2(z)

cos(z)

= x cos(z)− y sin(z).

Now, c4 = c1 − c2 = x cos(z)− y sin(z)− y cos(z)− x sin(z). Therefore,

u(x, y, z) =
(
x cos(z)− y sin(z)− y cos(z)− x sin(z)

)
e−z.
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(b) First, see that u(x, y, 0) = x− y, as desired. Next, see that

ux =
(

cos(z)− sin(z)
)
e−z,

uy =
(
− sin(z)− cos(z)

)
e−z, and

uz =
(
− x sin(z)− y cos(z) + y sin(z)− x cos(z)

)
e−z

−
(
x cos(z)− y sin(z)− y cos(z)− x sin(z)

)
e−z

=
(

2y sin(z)− 2x cos(z)
)
e−z,

so

−yux + xuy − uz =
(
− y cos(z)− y sin(z)− x sin(z) + x cos(z)

)
e−z = u,

as desired.

9. 2.1.9

10. 2.1.10

2.4 Aug 2015

I. Laplace Equation

1. 2.2.3

2. (4/9)

Let (un) be a sequence of harmonic functions on an open set Ω, and suppose that u1(x) ≤
u2(x) ≤ u3(x) ≤ · · · for all x ∈ Ω. Suppose that

lim
n→∞

un(x0)

converges for some fixed point x0 ∈ Ω. Prove that un converges uniformly on compact subsets
of Ω to a harmonic function u on Ω.

Let k > j, and let f = uk − uj . Then f is a difference of harmonic functions, hence harmonic, and
moreover, since k > j, f ≥ 0. Thus, on each connected open set U ⊂⊂ Ω, by Harnack’s inequality
there exists a positive constant C = C(U) such that sup

U
f ≤ C inf

U
f . Furthermore, since lim

n→∞
un(x0)

converges, for sufficiently large k and j, |uk(x0)− uj(x0)| = f(x0) < ε
C . Thus,

0 ≤ sup
U
f ≤ C inf

U
f ≤ Cf(x0) < ε.

Hence, f → 0 uniformly on compact subsets U of Ω, so un is uniformly Cauchy, hence converges
uniformly to a limit function u on Ω. Furthermore, by a corollary to the converse to the mean value
property, since (un) is a sequence of harmonic functions on Ω that converges uniformly on compact
sets of Ω to a limit u, u is harmonic on Ω.

3. 2.1.3

II. Heat Equations

4. 2.2.5
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5. (1/9)

Consider the function u(x, t) = xt
−3
2 e

−x2
4t . Show that{

ut −∆u = 0, x ∈ R and t > 0
lim
t→0+

u(x, t) = 0, x ∈ R

Why is this surprising?

A straightforward, if tedious, computation:

ut −∆u =
∂

∂t

[
xt
−3
2 e

−x2
4t

]
− ∂2

∂x2

[
xt
−3
2 e

−x2
4t

]
= x
−3

2
t
−5
2 e

−x2
4t + xt

−3
2 e

−x2
4t

x2

4t2
− ∂

∂x

[
t
−3
2 e

−x2
4t + xt

−3
2 e

−x2
4t
−2x

4t

]
= x
−3

2
t
−5
2 e

−x2
4t + xt

−3
2 e

−x2
4t

x2

4t2
−
(
t
−3
2 e

−x2
4t
−2x

4t
+ t

−3
2 e

−x2
4t
−2x

4t

+xt
−3
2 e

−x2
4t
−2x

4t

−2x

4t
+ xt

−3
2 e

−x2
4t
−2

4t

)
=
−3x

2t
5
2 e

x2

4t

+
x3

4t
7
2 e

x2

4t

+
x

2t
5
2 e

x2

4t

+
x

2t
5
2 e

x2

4t

− x3

4t
7
2 e

x2

4t

+
x

2t
5
2 e

x2

4t

= 0.

And by iterations of l’Hôpital,

lim
t→0+

xt
−3
2 e

−x2
4t = lim

t→0+

xt
−3
2

e
x2

4t

= lim
t→0+

x−3
2 t
−5
2

e
x2

4t
−x2

4t2

= lim
t→0+

6t
−1
2

xe
x2

4t

= lim
t→0+

6−1
2 t
−3
2

xe
x2

4t
−x2

4t2

= lim
t→0+

12t
1
2

x3e
x2

4t

= 0.

This is surprising because u is not unique; the zero function also satisfies the differential equation.

III. Wave Equations

6. 2.3.6

7. (2/9)

Let Ω ⊆ Rn be a bounded smooth domain. Let λ ∈ R and g ∈ C2
(
Ω
)

such that ∆g = λg and

g|∂Ω = 0. Find a solution u(x, t) to the wave equation utt −∆u = 0 on Ω × [0,∞) satisfying
u(x, 0) = g(x), ut(x, 0) = 0, and u|∂Ω = 0 for all t ≥ 0.

Assume that u(x, t) = h(x)f(t); that is, that u is separable. Then utt = h(x)f ′′(t) and ∆u = ∆h(x)f(t).
Furthermore, if ut(x, 0) = 0, then f ′(0) = 0. To build our solution, first let h(x) = g(x). Then

utt −∆u = 0, so g(x)f ′′(t)−∆g(x)f(t) = 0, so g(x)f ′′(t) = ∆g(x)f(t), so f ′′(t)
f(t) = ∆g(x)

g(x) = λg(x)
g(x) = λ,

and therefore f(t) = c1e
√
λt + c2e

−
√
λt. We may conveniently rewrite this as

f(t) = c1e
i
√
−λt + c2e

−i
√
−λt

= c1

(
cos(
√
−λt) + i sin(

√
−λt)

)
+ c2

(
cos(−

√
−λt) + i sin(−

√
−λt)

)
= c1 cos(

√
−λt) + c1i sin(

√
−λt) + c2 cos(−

√
−λt) + c2i sin(−

√
−λt)

= c1 cos(
√
−λt) + c1i sin(

√
−λt) + c2 cos(

√
−λt)− c2i sin(

√
−λt)

= (c1 + c2) cos(
√
−λt) + (c1 − c2)i sin(

√
−λt).
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Now we use the fact that f ′(0) = 0 to solve for c1 and c2. See that

f ′(t) = −(c1 + c2) sin(
√
−λt)

√
−λ+ (c1 − c2)i cos(

√
−λt)

√
−λ, so

0 = −(c1 + c2) · 0 ·
√
−λ+ (c1 − c2)i · 1 ·

√
−λ,

so c1 − c2 = 0. Therefore f(t) = (c1 + c2) cos(
√
−λt). And since u(x, 0) must be g(x), we have that

u(x, 0) = g(x)f(0) = g(x)(c1 + c2) cos(0) = g(x)(c1 + c2), and therefore c1 + c2 = 1. This means that
u(x, t) = g(x) cos(

√
−λt).

IV. Miscellaneous

8. (Warning: 2.3.8, with a +!)

The problem has two parts.

(a) Solve the partial differential equation

−yux + xuy − uz = u, for (x, y) ∈ R2 and z > 0

u(x, y, 0) = x+ y, for (x, y) ∈ R2.

(b) Prove that your solution solves the PDE.

(a) Let x′ = −y, y′ = x, z′ = −1, and f ′(t) = f(t). Then we have to solve

X ′ =

[
x
y

]′
=

[
x′

y′

]
=

[
0 −1
1 0

]
X.

This is a well known ODE with solution x = c1 cos(−t)+c2 sin(−t) and y = c2 cos(−t)−c1 sin(−t).
And clearly, z = −t+ c3 and f(t) = c4e

t.

When t = 0, z = 0, so c3 = 0 and thus t = −z. So x = c1 cos(z) + c2 sin(z) and y = c2 cos(z) −
c1 sin(z). We now solve for c1 and c2. See that

c1 =
x− c2 sin(z)

cos(z)
,

so

y = c2 cos(z)− x− c2 sin(z)

cos(z)
· sin(z)

y cos(z) = c2 cos2(z)− x sin(z) + c2 sin2(z)

y cos(z) + x sin(z) = c2.

Thus

c1 =
x− (y cos(z) + x sin(z)) sin(z)

cos(z)

=
x− y cos(z) sin(z)− x sin2(z)

cos(z)

=
x− y cos(z) sin(z)− x(1− cos2(z))

cos(z)

=
−y cos(z) sin(z) + x cos2(z)

cos(z)

= x cos(z)− y sin(z).

Now, c4 = c1 + c2 = x cos(z)− y sin(z) + y cos(z) + x sin(z). Therefore,

u(x, y, z) =
(
x cos(z)− y sin(z) + y cos(z) + x sin(z)

)
e−z.

27



(b) First, see that u(x, y, 0) = x+ y, as desired. Next, see that

ux =
(

cos(z) + sin(z)
)
e−z,

uy =
(
− sin(z) + cos(z)

)
e−z, and

uz =
(
− x sin(z)− y cos(z)− y sin(z) + x cos(z)

)
e−z

−
(
x cos(z)− y sin(z) + y cos(z) + x sin(z)

)
e−z

=
(
− 2x sin(z)− 2y cos(z)

)
e−z,

so

−yux + xuy − uz =
(
y cos(z)− y sin(z) + x sin(z) + x cos(z)

)
e−z = u,

as desired.

9. 2.1.9

10. 2.2.10

2.5 Jan 2016

I. Laplace Equation

1. 2.2.3

2. 2.4.2

3. 2.1.1

II. Heat Equations

4. 2.1.4

5. 2.1.5

III. Wave Equations

6. 2.2.6

7. 2.4.7

IV. Miscellaneous

8. 2.1.8

9. 2.1.9

10. 2.1.10

2.6 Aug 2016

I. Laplace Equation

1. 2.1.1

2. 2.1.2

3. 2.1.3
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II. Heat Equations

4. (2/9)

This problem is in two parts:

(a) Derive a representation formula for the initial value problem:{
∂tu(x, t)−∆u(x, t) = 0 in Rn × (0,∞)
u(x, 0) = g(x) ∈ CC (Rn) in Rn × {t = 0}.

(b) Write down a representation formula for the PDE{
∂tu−∆u+ cu = 0 in Rn × (0,∞)
u(x, 0) = g(x) ∈ C2

C (Rn) in Rn × {t = 0}.

where c ∈ R is a fixed constant.

5. 2.1.5

III. Wave Equations

6. 2.3.6

7. 2.3.7

IV. Miscellaneous

8. 2.4.8

9. 2.1.9

10. 2.2.10

2.7 Jan 2017

I. Laplace Equation

1. 2.2.3

2. 2.1.2

3. (2/9)

Let u ∈ C (Rn) satisfy the mean value property

u(x) =
1

|∂B(x, r)|

ˆ
∂B(x,r)

udσ

If ϕ ∈ C∞C (Rn) is radial (so ϕ(x) = ψ(|x|) for some smooth function ψ on R) and satisfiesˆ
Rn

ϕ = 1 and ϕε(x) = εnϕ(ε−1x), show that if ε > 0, then

u(x) =

ˆ
Rn

u(y)ϕε(x− y)dy, for all x ∈ Rn.

II. Heat Equations
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4. 2.1.4

5. 2.6.4

III. Wave Equations

6. 2.2.6

7. 2.3.6

IV. Miscellaneous

8. 2.3.8

9. 2.1.9

10. 2.2.10

2.8 Aug 2017

I. Laplace Equation

1. 2.2.3

2. 2.4.2

3. 2.7.3

II. Heat Equations

4. 2.1.4

5. 2.1.5

III. Wave Equations

6. 2.2.6

7. 2.3.6

IV. Miscellaneous

8. 2.1.8

9. 2.1.9

10. 2.1.10

2.9 Jan 2018

I. Laplace Equation

1. 2.1.1

2. 2.4.2

3. 2.1.3

II. Heat Equations
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4. (1/9)

Let Ω ⊆ Rn be a bounded smooth domain. Let λ ∈ R and g ∈ C2
(
Ω
)

such that ∆g = λg and

g|∂Ω = 0. Find a solution u(x, t) to the heat equation ut − ∆u = 0 on Ω × [0,∞) satisfying
u(x, 0) = g(x) and u|∂Ω = 0 for all t ≥ 0.

Assume that u(x, t) is separable, so u(x, t) = h(x)f(t). Then ut(x, t) = h(x)f ′(t) and ∆u(x, t) =

∆h(x)f(t). Thus 0 = ut −∆u = h(x)f ′(t)−∆h(x)f(t), so ∆h(x)f(x) = h(x)f ′(t), and ∆h(x)
h(x) = f ′(t)

f(t) .

To build the solution, let h(x) = g(x), and since ∆g(x) = λg(x), f ′(t)
f(t) = λg(x)

g(x) = λ, so f ′(t) = λf(t),

and thus f(t) = Ceλt. Since u(x, 0) = g(x), u(x, 0) = g(x)Ce0 = g(x)C, so C = 1. Therefore,
u(x, t) = g(x)eλt.

5. 2.2.5

III. Wave Equations

6. 2.2.6

7. 2.3.7

IV. Miscellaneous

8. 2.4.8

9. 2.1.9

10. 2.2.10
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